Iron chelator-mediated alterations in gene expression: identification of novel iron-regulated molecules that are molecular targets of hypoxia-inducible factor-1 alpha and p53.

نویسندگان

  • Federica Saletta
  • Yohan Suryo Rahmanto
  • Egarit Noulsri
  • Des R Richardson
چکیده

Iron deficiency affects 500 million people, yet the molecular role of iron in gene expression remains poorly characterized. In addition, the alterations in global gene expression after iron chelation remain unclear and are important to assess for understanding the molecular pathology of iron deficiency and the biological effects of chelators. Considering this, we assessed the effect on whole genome gene expression of two iron chelators (desferrioxamine and 2-hydroxy-1-napthylaldehyde isonicotinoyl hydrazone) that have markedly different permeability properties. Sixteen genes were significantly regulated by both ligands, whereas a further 50 genes were significantly regulated by either compound. Apart from iron-mediated regulation of expression via hypoxia inducible factor-1 alpha, it was noteworthy that the transcription factor p53 was also involved in iron-regulated gene expression. Examining 16 genes regulated by both chelators in normal and neoplastic cells, five genes (APP, GDF15, CITED2, EGR1, and PNRC1) were significantly differentially expressed between the cell types. In view of their functions in tumor suppression, proliferation, and apoptosis, these findings are important for understanding the selective antiproliferative effects of chelators against neoplastic cells. Most of the genes identified have not been described previously to be iron-regulated and are important for understanding the molecular and cellular effects of iron depletion.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Up-regulation of hypoxia-inducible factor-1alpha is not sufficient for hypoxic/anoxic p53 induction.

Oxygen-deprived regions of a solid tumor can induce tumor suppressor p53 expression and hence select for p53-mutant tumor cells with diminished apoptotic potential. It has been proposed that the hypoxia-inducible factor-1 (HIF-1) alpha subunit binds to p53 and protects it from proteasomal degradation. However, we found that hypoxic conditions that strongly induce HIF-1-dependent endogenous gene...

متن کامل

Iron Chelator-Mediated Alterations in Gene Expression: Identification of Novel Iron-Regulated Molecules That Are Molecular Targets of Hypoxia-Inducible Factor-1 and p53

Iron deficiency affects 500 million people, yet the molecular role of iron in gene expression remains poorly characterized. In addition, the alterations in global gene expression after iron chelation remain unclear and are important to assess for understanding the molecular pathology of iron deficiency and the biological effects of chelators. Considering this, we assessed the effect on whole ge...

متن کامل

فاکتور القا شونده به‌وسیله هیپوکسی: نقش آن در آنژیوژنز و سرطان

Angiogenesis, as the process of new vessel formation from pre-existing vessels is dependent on a delicate equilibrium between endogenous angiogenic and antiangiogenic factors. However, under pathological conditions, this tight regulation becomes lost which can result in the formation of the different diseases such as cancer. Angiogenesis is a complex process that includes many gene products tha...

متن کامل

Iron chelation by clinically relevant anthracyclines: alteration in expression of iron-regulated genes and atypical changes in intracellular iron distribution and trafficking.

Anthracyclines are effective anticancer agents. However, their use is limited by cardiotoxicity, an effect linked to their ability to chelate iron and to perturb iron metabolism (Mol Pharmacol 68:261-271, 2005). These effects on iron-trafficking remain poorly understood, but they are important to decipher because treatment for anthracycline cardiotoxicity uses the chelator, dexrazoxane. Incubat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular pharmacology

دوره 77 3  شماره 

صفحات  -

تاریخ انتشار 2010